Brand Name: | PRMCAS |
Model Number: | 86AHS850 Eight Wires |
MOQ: | ≥50pcs |
Packaging Details: | 50pcs for each carton |
Payment Terms: | Company account based T/T |
1. Products Overview
Step motor is a motor that converts the electrical pulse signal into the corresponding angle displacement. For each of the pulse signal, the rotor rotates a certain angle accordingly, and the speed is proportional to the input pulses’ frequency. Therefore, step motor is also called pulse motor.
The biggest difference between step motor compared to other control motors is that it receives digital control signals (pulses) and converts into angle displacement accordingly. Enter a pulse signal to get a specified position increment. Compared with the traditional DC control system, such a so-called incremental position control system, the stepper system complexity and cost are significantly reduced. The angular displacement of the stepping motor is strictly proportional to the number of input pulse, and it is synchronized with the pulse in time. Therefore, by controlling the pulse frequency and pulse quantity, the motor shaft speed, and position can be controlled precisely too.
At the same time, Kaifull has solved many problems of traditional stepper drivers buy the latest patented technologies. There are many middle and high end customers globally, and they highly appreciate our stepper motor and drives very much.
Although the stepper motor and its control technology are currently very mature, if not used properly, there may still be a situation of step loss, that is, position error etc. Here, we will analyze some problems and solutions.
Losing pulses when changing direction leads to inaccurate positioning
When changing direction, the pulse is lost, which means that it is accurate in any direction, but as soon as the direction is changed, errors accumulate, and the more times it is changed, the more biased it is.
Solution: Generally, stepper drivers have certain requirements for direction and pulse signals. For example, the direction signal is determined a few microseconds before the first rising or falling edge of the pulse (different drivers have different requirements) arrives. Otherwise, there will be a pulse that runs in the opposite direction of the actual required direction. Finally, the problem will appear as it deviates more and more, with smaller subdivisions becoming more prominent. The main solution is to use software to change the logic of the pulse or add a delay.
The initial speed is too high and the acceleration is too large, which sometimes causes stepping loss.
Solution: Due to the characteristics of the stepper motor, the initial speed should not be too high, especially when the load inertia is large. It is recommended to have the initial speed below 1r/s, so that the impact is small. If the same acceleration is too large, it will also have a large impact on the system, which is simple overshoot
Insufficient motor output torque
Solution: Increase the motor current appropriately, increase the voltage of the progressive driver (pay attention to the optional driver), and choose a motor with higher torque.
Environmental electromagnetic interference causes mis-operation of the controller or driver, resulting in inaccurate positioning.
It is necessary to identify the source of disturbance and reduce its electromagnetic interference on the stepper system, such as increasing spatial distance, using shielded wires for signal lines, and ensuring good grounding of the controller or driver to block communication channels and improve its anti-interference ability.
Solutions:
Target Applications of Kaifull PRMCAS Hybrid Stepper Motors
Machine tools and engraving machines
The application of stepper motors in machine tools is also very common. In machine tools, stepper motors are used to control the feed and tool retraction, thereby achieving precision and speed in machining workpieces. It can achieve different processing effects, high speed, and high efficiency.
Automation equipment
The application of stepper motors in automation equipment is also very extensive. In automation equipment, stepper motors are used to control the position and speed of various moving components, thereby achieving automation control of the equipment. It can achieve different control effects, such as high speed and high stability.
Printing machines
Stepper motors are widely used in printers. In a printer, a stepper motor is used to control the movement of the print head, thereby achieving precise printing of text, images, and charts. It can achieve different printing effects, such as high definition, high speed, and high stability.
Automotive components
The application of stepper motors in automotive components is also very common. In automotive components, stepper motors are used to control the position and speed of car seats, rearview mirrors, windows, and doors, thereby achieving automated control of automotive components. It can achieve different control effects, such as high speed and high reliability.
Optical equipment
In optical equipment, stepper motors are widely used in modulators, fine-tuning, and other aspects. Because the action of stepper motors is very slow and the stepper angle can be adjusted, they are widely used in various optical positioning mechanisms, which can provide higher stability and accuracy for optical equipment.
Medical devices
Stepper motors are widely used in medical devices, especially in surgical instruments such as blades and cutters. The high-precision positioning of stepper motors can significantly improve the accuracy of surgery and make surgery safer. Stepper motors can also be used in devices such as pacemakers and syringes.
Precision positioning applications
Stepper motors can complete precise positioning tasks through quantitative motion and fixed step angles, which makes them widely used in various precision positioning equipment, such as optical equipment, textile equipment, computer embroidery machines, medical equipment, automation equipment, etc. These equipment usually require high-precision and stable positioning machinery, and stepper motors are perfect for such tasks.
In summary, stepper motors can be widely used in various fields due to their characteristics of quantitative motion and fixed stepper angle, providing more precise and efficient driving force for mechanical equipment to achieve higher production efficiency and quality.
2. Hybrid Stepper Motor General Technical Specifications
Step Angle | 1.8° (2 Phase) |
Step Angle Accuracy | 0.09° |
Shaft Type | Single shaft, Dia. 14.0 or 12.7mm (Customizable) |
Max. Temperature Rise | Less than 80 °C (Rated Current) |
Max. Surface Temperatures | Max Allowed 100℃ |
Ambient Temperature | -20 °C ~ +50 °C |
Insulation Grade | 100 MΩ Min. , Class B |
Dielectric Strengt | 500 VAC for 1 Minute |
Max. Axial Load | 60N |
Max. Radial Load | 320N (10mm from mounting Surface) |
Certificates | Rohs, CE, CCC (As per Customer Need) |
3. Hybrid Stepper motor Performance Datasheet
Model |
Current A/Ø |
Resistance Ω/Ø |
Inductance mH/Ø |
Holding Torque N.m |
Rotor Inertia g.cm2 |
Lead # of Leads |
Weight kg |
Length mm |
Matching Drive |
86AHS850-3608S-126-14F |
3.6 Parrallel |
1.05 | 11 | 8.5 | 2750 | 8 | 3.8 | 125.5 | Y2SA2 |
86AHS850-1808S-126-14F |
1.8 Serial |
4.2 | 44 | 8.5 | 2750 | 8 | 3.8 | 125.5 | Y2SA2 |
4. Mechanical Dimensions (in mm)
5. Wiring Diagram
6. Torque Speed Curves
Brand Name: | PRMCAS |
Model Number: | 86AHS850 Eight Wires |
MOQ: | ≥50pcs |
Packaging Details: | 50pcs for each carton |
Payment Terms: | Company account based T/T |
1. Products Overview
Step motor is a motor that converts the electrical pulse signal into the corresponding angle displacement. For each of the pulse signal, the rotor rotates a certain angle accordingly, and the speed is proportional to the input pulses’ frequency. Therefore, step motor is also called pulse motor.
The biggest difference between step motor compared to other control motors is that it receives digital control signals (pulses) and converts into angle displacement accordingly. Enter a pulse signal to get a specified position increment. Compared with the traditional DC control system, such a so-called incremental position control system, the stepper system complexity and cost are significantly reduced. The angular displacement of the stepping motor is strictly proportional to the number of input pulse, and it is synchronized with the pulse in time. Therefore, by controlling the pulse frequency and pulse quantity, the motor shaft speed, and position can be controlled precisely too.
At the same time, Kaifull has solved many problems of traditional stepper drivers buy the latest patented technologies. There are many middle and high end customers globally, and they highly appreciate our stepper motor and drives very much.
Although the stepper motor and its control technology are currently very mature, if not used properly, there may still be a situation of step loss, that is, position error etc. Here, we will analyze some problems and solutions.
Losing pulses when changing direction leads to inaccurate positioning
When changing direction, the pulse is lost, which means that it is accurate in any direction, but as soon as the direction is changed, errors accumulate, and the more times it is changed, the more biased it is.
Solution: Generally, stepper drivers have certain requirements for direction and pulse signals. For example, the direction signal is determined a few microseconds before the first rising or falling edge of the pulse (different drivers have different requirements) arrives. Otherwise, there will be a pulse that runs in the opposite direction of the actual required direction. Finally, the problem will appear as it deviates more and more, with smaller subdivisions becoming more prominent. The main solution is to use software to change the logic of the pulse or add a delay.
The initial speed is too high and the acceleration is too large, which sometimes causes stepping loss.
Solution: Due to the characteristics of the stepper motor, the initial speed should not be too high, especially when the load inertia is large. It is recommended to have the initial speed below 1r/s, so that the impact is small. If the same acceleration is too large, it will also have a large impact on the system, which is simple overshoot
Insufficient motor output torque
Solution: Increase the motor current appropriately, increase the voltage of the progressive driver (pay attention to the optional driver), and choose a motor with higher torque.
Environmental electromagnetic interference causes mis-operation of the controller or driver, resulting in inaccurate positioning.
It is necessary to identify the source of disturbance and reduce its electromagnetic interference on the stepper system, such as increasing spatial distance, using shielded wires for signal lines, and ensuring good grounding of the controller or driver to block communication channels and improve its anti-interference ability.
Solutions:
Target Applications of Kaifull PRMCAS Hybrid Stepper Motors
Machine tools and engraving machines
The application of stepper motors in machine tools is also very common. In machine tools, stepper motors are used to control the feed and tool retraction, thereby achieving precision and speed in machining workpieces. It can achieve different processing effects, high speed, and high efficiency.
Automation equipment
The application of stepper motors in automation equipment is also very extensive. In automation equipment, stepper motors are used to control the position and speed of various moving components, thereby achieving automation control of the equipment. It can achieve different control effects, such as high speed and high stability.
Printing machines
Stepper motors are widely used in printers. In a printer, a stepper motor is used to control the movement of the print head, thereby achieving precise printing of text, images, and charts. It can achieve different printing effects, such as high definition, high speed, and high stability.
Automotive components
The application of stepper motors in automotive components is also very common. In automotive components, stepper motors are used to control the position and speed of car seats, rearview mirrors, windows, and doors, thereby achieving automated control of automotive components. It can achieve different control effects, such as high speed and high reliability.
Optical equipment
In optical equipment, stepper motors are widely used in modulators, fine-tuning, and other aspects. Because the action of stepper motors is very slow and the stepper angle can be adjusted, they are widely used in various optical positioning mechanisms, which can provide higher stability and accuracy for optical equipment.
Medical devices
Stepper motors are widely used in medical devices, especially in surgical instruments such as blades and cutters. The high-precision positioning of stepper motors can significantly improve the accuracy of surgery and make surgery safer. Stepper motors can also be used in devices such as pacemakers and syringes.
Precision positioning applications
Stepper motors can complete precise positioning tasks through quantitative motion and fixed step angles, which makes them widely used in various precision positioning equipment, such as optical equipment, textile equipment, computer embroidery machines, medical equipment, automation equipment, etc. These equipment usually require high-precision and stable positioning machinery, and stepper motors are perfect for such tasks.
In summary, stepper motors can be widely used in various fields due to their characteristics of quantitative motion and fixed stepper angle, providing more precise and efficient driving force for mechanical equipment to achieve higher production efficiency and quality.
2. Hybrid Stepper Motor General Technical Specifications
Step Angle | 1.8° (2 Phase) |
Step Angle Accuracy | 0.09° |
Shaft Type | Single shaft, Dia. 14.0 or 12.7mm (Customizable) |
Max. Temperature Rise | Less than 80 °C (Rated Current) |
Max. Surface Temperatures | Max Allowed 100℃ |
Ambient Temperature | -20 °C ~ +50 °C |
Insulation Grade | 100 MΩ Min. , Class B |
Dielectric Strengt | 500 VAC for 1 Minute |
Max. Axial Load | 60N |
Max. Radial Load | 320N (10mm from mounting Surface) |
Certificates | Rohs, CE, CCC (As per Customer Need) |
3. Hybrid Stepper motor Performance Datasheet
Model |
Current A/Ø |
Resistance Ω/Ø |
Inductance mH/Ø |
Holding Torque N.m |
Rotor Inertia g.cm2 |
Lead # of Leads |
Weight kg |
Length mm |
Matching Drive |
86AHS850-3608S-126-14F |
3.6 Parrallel |
1.05 | 11 | 8.5 | 2750 | 8 | 3.8 | 125.5 | Y2SA2 |
86AHS850-1808S-126-14F |
1.8 Serial |
4.2 | 44 | 8.5 | 2750 | 8 | 3.8 | 125.5 | Y2SA2 |
4. Mechanical Dimensions (in mm)
5. Wiring Diagram
6. Torque Speed Curves